312 research outputs found

    QED radiative corrections for elastic e(mu)p scattering in hadronic variables

    Full text link
    A numerical analysis of QED radiative corrections for elastic e(mu)p cattering in hadronic variables at energies of the current experiment at JLab is performed. The explicit formulas from the review of Akhundov et al. resulting from the integration over the phase space of leptonic variables plus photon are used to obtain the values of the cross sections and the radiative correction factor for unpolarized lepton-proton scattering. Our numerical results agree with the corresponding results arising from the formulas of Afanasev et al.Comment: 4 Pages, 4 figure

    Effective Field Theory of Gravity: Leading Quantum Gravitational Corrections to Newtons and Coulombs Law

    Full text link
    In this paper we consider general relativity and its combination with scalar quantum electrodynamics (QED) as an effective quantum field theory at energies well below the Planck scale. This enables us to compute the one-loop quantum corrections to the Newton and Coulomb potential induced by the combination of graviton and photon fluctuations. We derive the relevant Feynman rules and compute the nonanalytical contributions to the one-loop scattering matrix for charged scalars in the nonrelativistic limit. In particular, we derive the post-Newtonian corrections of order Gm/c2rGm/\text c^2 r from general relativity and the genuine quantum corrections of order Gâ„Ź/c3r2G\hbar/\text c^3 r^2.Comment: 14 pages, 12 figure

    Radiative Corrections for Pion Polarizability Experiments

    Full text link
    We use the semi-analytical program RCFORGV to evaluate radiative corrections to one-photon radiative emission in the high-energy scattering of pions in the Coulomb field of a nucleus with atomic number Z. It is shown that radiative corrections can simulate a pion polarizability effect. The average effect was estimated for pion energies 40-600 GeV. We also study the range of applicability of the equivalent photon approximation in describing one-photon radiative emission.Comment: 11 pages (LaTex), 6 figures, 1 table. No changes in the paper. New submission because old files are corrupted in arXi

    Model independent QED corrections to the process ep →\to eX

    Get PDF
    We give an exhaustive presentation of the semi-analytical approach to the model independent leptonic QED corrections to deep inelastic neutral current lepton-nucleon scattering. These corrections include photonic bremsstrahlung from and vertex corrections to the lepton current of the order {\cal O}(\alpha) with soft photon exponentiation. % A common treatment of these radiative corrections in several variables -- leptonic, hadronic, mixed, Jaquet-Blondel variables -- has been developed and double differential cross-sections are calculated. In all sets of variables we use some structure functions, which depend on the hadronic variables and which do not have to be defined in the quark parton model. The remaining numerical integrations are twofold (for leptonic variables) or onefold (for all other variables). For the case of hadronic variables, all phase space integrals have been performed analytically. Numerical results are presented for a large kinematical range, covering fixed target as well as collider experiments at HERA or LEP\otimesLHC, with a special emphasis on HERA physics.We give an exhaustive presentation of the semi-analytical approach to the model independent leptonic QED corrections to deep inelastic neutral current lepton-nucleon scattering. These corrections include photonic bremsstrahlung from and vertex corrections to the lepton current of the order O(α){\cal O}(\alpha) with soft photon exponentiation. % A common treatment of these radiative corrections in several variables -- leptonic, hadronic, mixed, Jaquet-Blondel variables -- has been developed and double differential cross-sections are calculated. In all sets of variables we use some structure functions, which depend on the hadronic variables and which do not have to be defined in the quark parton model. The remaining numerical integrations are twofold (for leptonic variables) or onefold (for all other variables). For the case of hadronic variables, all phase space integrals have been performed analytically. Numerical results are presented for a large kinematical range, covering fixed target as well as collider experiments at HERA or LEP⊗\otimesLHC, with a special emphasis on HERA physics

    High energy leptons from muons in transit

    Full text link
    The differential energy distribution for electrons and taus produced from lepton pair production from muons in transit through materials is numerically evaluated. We use the differential cross section to calculate underground lepton fluxes from an incident atmospheric muon flux, considering contributions from both conventional and prompt fluxes. An approximate form for the charged current differential neutrino cross section is provided and used to calculate single lepton production from atmospheric neutrinos. We compare the fluxes of underground leptons produced from incident muons with those produced from incident neutrinos and photons from muon bremsstrahlung. We discuss their relevance for underground detectors.Comment: 11 pages, 9 figures v2: Revised to include the calculation of muon bremsstrahlung events in comparison to pair production events. 1 new figur
    • …
    corecore